
ActiveX Controls and Citect SCADA 
By Warwick Black 

 

ActiveX Controls ...........................................................................................................2 

Overview....................................................................................................................2 

Figure 1: The Visual Interface, Properties, Methods and Events allow 

CitectSCADA to interact with the ActiveX control.ActiveX Control Members: .....2 

ActiveX Control Members:........................................................................................3 

Properties:    ......................................................................................................3 

Methods:     ......................................................................................................3 

Events:         .......................................................................................................3 

Creating ActiveX Object Instances in Citect SCADA ..................................................4 

Creating instance during Design-Time ..................................................................4 

Creating Control Object instance during Run-Time:.............................................6 

Creating an Object instance during Run-Time (i.e non Visual): ...........................7 

Using ActiveX Objects in Citect SCADA.....................................................................8 

Linking Properties to SCADA Tags in Design-Time ................................................8 

Using ActiveX Controls via CiCode........................................................................10 

Referencing an ActiveX Instance ........................................................................10 

Using Properties from CiCode.............................................................................11 

Using Methods from CiCode...............................................................................12 

Writing Event Handlers in CiCode:.....................................................................13 

Advanced Concepts .....................................................................................................14 

Accessing Properties with Indexes ..........................................................................14 

Accessing members of ‘Nested’ Classes .................................................................14 

iDispatch Interface and Citect Compatability..........................................................15 

Linking Properties to SCADA Tags at Runtime via CiCode ..................................16 

ActiveX Cicode Function List .................................................................................17 

Link / Recommended Reading.................................................................................18 

 



ActiveX Controls 

Overview 

 

Active X Controls (formerly called OLE Controls) are ready-made components which 

can be added to a ‘Container Program’, such as CitectSCADA, to add its functionality 

to that program. 

 

The ActiveX could be considered analogous to an ‘Include Project’ used to add a 

library of pre-defined functions and sometimes a graphical component to the SCADA 

project. 

 

ActiveX objects with a visual interface are commonly referred to as an ‘ActiveX 

Control Object’, and those without a visual interface, simply an ‘ActiveX Object’. 

 

Unless you have created the ActiveX yourself (not covered in this document) we are 

not concerned with what happens inside the ActiveX itself. instead we are just 

concerned with what interfaces that the Object exposes to Citect SCADA. 

 

There are 3 types of interfaces or ‘Members’ to an ActiveX Control that we are 

interested in. 

 

These are ‘Properties’, ‘Methods’ and ‘Events’ and are explained in more detail in the 

next section. 

 

The easiest way to view all Interfaces or ‘Members’ of an ActiveX control is to use 

the VB Object Explorer, instructions on how to do this with MS Excel are laid out in 

Knowledgebase (KB) article Q4102. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Visual Interface, Properties, Methods and Events allow CitectSCADA to 
interact with the ActiveX control.

 

Container Program (Citect SCADA) ActiveX Control 

Methods 

Properties 

Events 

Visual Interface (for Control Objects) 



ActiveX Control Members: 
 

The following screenshot, obtained following KB article Q4102, shows some of the 

members available inside the MS Forms ‘TextBox’ ActiveX control. 

  

 
 

Properties:     

Properties are variables that determine how a control will behave. These are 

either set at Design Time, during Runtime via CiCode, or internally by the ActiveX 

itself. 

 

In the above example, the property, MultiLine, can be set to True or False, and 

controls whether or not to Text is confined to one line only or not. 

 

Likewise, the property, Scrollbars, can be set to True or False, and controls 

whether or not to display Scrollbars. 

 

As discussed later in this article, these can be ‘Linked’ to CitectSCADA Variable 

Tags during Design-Time, or they can be checked/set via CiCode/CiVBA at Run-

Time. 

 

Methods:      

A ‘Method’ of an ActiveX control is an externally accessible function, usually 

performing an operation on or within the ActiveX control it belongs to. 

 

For example, in the screenshot at the top of the page, we can see that the 

TextBox control contains the ‘Paste’ Method (amongst others). 

This ‘Paste’ function can now be called from CiCode or CiVBA, during Runtime, to 

paste the Clipboard contents to that instance of the TextBox Control. 

 

Events:          

Events are controlled by the ActiveX itself, and are often used to let the Container 

Program (i.e CitectSCADA) know when a certain condition has been met. 

 

In the above example, we can see that there are various mouse-related events 

inside the TextBox control, such as MouseDown. This event will be triggered by 

the control when it detects a Mouse Down action has been performed on the 

TextBox. 

 

If we want to utilise these events, we need to write an ‘Event-Handler’ in CiCode 

or CiVBA, otherwise these operations will be ignored. Writing ‘Event Handlers’ is 

discussed later. 



Creating ActiveX Object Instances in Citect SCADA 
 

Before using an ActiveX object, it must be added to the CitectSCADA page. This can 

be done graphically during Design-Time or via code at Runtime. Since you can 

multiple sessions of an ActiveX object each one is generally referred to as an 

‘Instance’. 

Creating an instance during Design-Time 

In Graphics Builder open a new Page and paste an Active X control onto the Page. 

For this example we will be using the ‘Microsoft Web Browser’ ActiveX Control. 

 

 
 

Resize the ActiveX control to suit the desired layout, and you page should look as 

follows: 

 

 



In order to access this object programmatically, we need to know what the ‘Object 

Name’ and ‘Event Class’ of this new instance are. 

 

These are automatically created by CitectSCADA, and can be graphically checked by: 

 

• Right Click the ActiveX instance, Select ‘Properties’ 

• Browse to the ‘Access’ Top Tab 

• Select the ‘Identification' Side Tab.  

 

On this screen, we make note of the ‘Object Name’ (AN201) and the ‘Event Class’ 

(Untitled_AN201’). 

 

 
 

The ‘Event Class’ is automatically generated by the first 8 characters of the Page 

Name, followed by an underscore and the ‘Object Name’. 

 

The ‘Object Name’ is automatically generated based upon the Animation Number of 

the object. 

 

If we now save our page, the ‘Event Class’ has now changed to ‘Page1_AN201’. 

 

 
 

NOTE: 

Note the “Persist ActiveX data between page transitions” option. If checked this 

will allow your object to retain values whilst changing CitectSCADA pages, so 

when you come back the values should still be there. 



Creating Control Object instance during Runtime: 

 

To create an instance of an ‘ActiveX Control Object’ you can use the CiCode 

function: CreateControlObject. 

 

The main difference between this and the Graphical method, is that you have to 

manually assign the ‘Object Name’ and ‘Event Class’ that is created automatically via 

the Graphical method. 

 

An object created using this function remains in existence until the page is closed or the associated 

CiCode Object is deleted. This function does not require an existing animation point. When the object 

is created, an animation point is created internally. This animation point is freed when the object is 

destroyed.  

Syntax  

CreateControlObject(sClass, sName, x1, y1, x2, y2, sEventClass)  

sClass:  
The class of the object. You can use the object's human readable name, its program ID, or its GUID. If 

the class does not exist, the function will fail.  

For example: 

* "Calendar Control 8.0" - human readable name 

* "MSCAL.Calendar.7" - Program ID 

* "{8E27C92B-1264-101C-8A2F-040224009C02}" – GUID 

sName:  
The name for the object in the form of "AN" followed by its AN number, eg. "AN35". This name is 

used to access the object.  

x1: 
The x coordinate of the object's top left hand corner as it will appear in your CitectSCADA window.  

y1: 
The y coordinate of the object's top left hand corner as it will appear in your CitectSCADA window.  

x2: 
The x coordinate of the object's bottom right hand corner as it will appear in your CitectSCADA 

window.  

y2: 
The y coordinate of the object's bottom right hand corner as it will appear in your CitectSCADA 

window.  

sEventClass:  
The string you would like to use as the event class for the object.  

 

ReturnValue: 
The newly created object, if successful, otherwise an error is generated. 

 



Creating an Object instance during Run-Time (i.e non Visual): 
 

To create a non-visual instance of a control object, the CiCode function CreateObject 

can be used. 

 

This does not create a Visual component, nor does it require an ‘Event Class’ or 

‘Object Name’ the Return Value of the function provides the handle to refer to this 

instance programmatically. 

 

CreateObject  

Creates a new instance of an ActiveX object. If you use this function to create an ActiveX object, it 

will have no visual component (only the automation component will be created).  

If you assign an object created with the CreateObject() function to a local variable, that object will 

remain in existence until the variable it is assigned to goes out of scope. This means that such an object 

will only be released when the CiCode function that created it ends.  

If you assign an object created with the CreateObject() function to a module or global scope variable, 

then that object will remain in existence until the variable either has another object assigned or is set to 

NullObject, provided the CreateObject() call is not made within a loop.  

Objects created by calls to CreateObject() within WHILE or FOR loops are only released on 

termination of the CiCode function in which they are created, regardless of the scope of the variable to 

which the object is assigned. The use of CreateObject() within a loop may therefore result in the 

exhaustion of system resources, and is not generally recommended unless performed as shown in the 

examples below.  

Syntax  

CreateObject(sClass)  

sClass:  
The class of the object. You can use the object's human readable name, its program ID, or its GUID. If 

the class does not exist, the function will fail.  

For example: 

* "Calendar Control 8.0" - human readable name 

* "MSCAL.Calendar.7" - Program ID 

* "{8E27C92B-1264-101C-8A2F-040224009C02}" - GUID 

Return Value  

The newly created object, if successful, otherwise an error is generated. 



Using ActiveX Objects in Citect SCADA 
 

Once the instance of the ActiveX Control has been created, there are several ways of 

interacting with an ActiveX object via Citect SCADA. 

 

All of these methods utilize the Properties, Methods and Events that we have 



A practical example of using this would be linking the ‘Value’ Property of a MS 

Forms Textbox to a SCADA String Tag, to update on the ‘Change’ event, as shown 

below: 

 

Whenever the text is changed within the Text Box, the contents of this Text Box is 

exposed to CitectSCADA via the ‘Value’ property. By linking this to a SCADA Tag, 

the SCADA Tag will now contain the contents of the TextBox, and will be updated 

whenever the Text changes. 



Using ActiveX Controls via CiCode 

Referencing an ActiveX Instance 

In order to use CiCode to manipulate an ActiveX, we require a handle that we can use 

to point the CiCode commands to the correct instance of the ActiveX. This is when 

the ‘Object Name’ comes into play. 

In order to return the Handle (of type OBJECT), from the ‘Object Name’, we can use 

the function: 

OBJECT hActiveX; 

hActiveX = ObjectByName(“AN201”) 

Where hActiveX  is where we are going to store the handle, and “AN201” is the 

‘Object Name’ as discussed previously. 

We can abbreviate this by removing the hActiveX variable, and calling the 

ObjectByName function directly as an argument of another ActiveX function, 

however this is less efficient if you are doing this multiple times. 

hActiveX = ObjectByName(“AN201”); 

sText = _ObjectGetProperty(hActiveX,”Value”); 

 

Can be abbreviated to: 

 

sText = _ObjectGetProperty(ObjectByName(“AN201”),”Value”); 

If we created the object via CiCode, we could use the Return Value of the 

CreateObject or CreateControlObject as the handle instead. 

Now that we know how to refer to a specific instance of an ActiveX object, we can 

look into how to use this to manipulate the ActiveX object. 



Using Properties from CiCode 

There are two ways of manipulating Properties via CiCode, these are reading (‘Get’) 

and writing (‘Set’). 

The following functions are used: 

_ObjectGetProperty 

_ObjectSetProperty 

These are fairly simple, to get the current value of, say the ‘Value’ property of a MS 

Forms Textbox, we use the aforementioned example: 

sText = _ObjectGetProperty(ObjectByName(“AN201”),”Value”); 

This will return the value of the “Value” property of the TextBox at AN201, to the 

String Tag, sText. 

Alternatively, in order to see if the TextBox has ‘Multiline’ enabled, then we can run 

the following CiCode: 

iIsMultiline = _ObjectGetProperty(ObjectByName(“AN201”),”MultiLine”); 

Which will return 0 or 1, for True or False. 

In order to ‘Set’ a property, no return value is required (although it will return 0 for 

success, or an error code), however, this time we need to pass the Property Name, and 

the Value that we want it set to, i.e: 

 _ObjectSetProperty(ObjectByName(“AN201”),”Value”,”This is my new text”); 

Or: 

sText = “This is my new Text” 

hActiveX = ObjectByName(“AN201”) 

_ObjectSetProperty(hActiveX,”Value”,sText); 



Using Methods from CiCode 

In order to call a Method from CiCode, we use the following function: 

_ObjectCallMethod 

In order to use this function, we need to point it at the correct instance of the ActiveX 

control using a handle, pass the name of the Method we want to call, as a string, parse 

arguments, and capture a return value, if required. 

i.e In order to clear all items from  a ComboBox, the ‘Clear’ method can be used as 

follows: 

_ObjectCallMethod(ObjectByName(“AN210”),”Clear”); 

Alternatively, to add an item to the ComboBox, you can use the ‘AddItem’ Method, 

and parse in the text that you wish to add, and an index: 

_ObjectCallMethod(ObjectByName(“AN210”),”AddItem”,”Tag1”,iIndex); 

To add another item, increment the iIndex value, and call a similar function again: 

iIndex = iIndex + 1; 

_ObjectCallMethod(ObjectByName(“AN210”),”AddItem”,”Tag2”,iIndex); 



Writing Event Handlers in CiCode: 

An Event handler is usually used to run a function inside the Container Program 

(Citect SCADA), when a particular Event has triggered from within an ActiveX 

control. 

In order to do this, we write essentially a normal CiCode function, but we have to pay 

careful attention to the name of the function, and the arguments, since the arguments 

will be parsed by the ActiveX control. 

The function name must be of the format: “EVENT_CLASS’ + “_” + “Event Name” 

Note: There is a limitation in CitectSCADA where the name of the Event Handler 

must be no more than 33 characters long 

Also of note, the first argument of your function must be of Type OBJECT, as the 

Handle of the calling ActiveX control is always provided by the ActiveX control 

when the event is triggered. 

I.e in order to define a MouseDown event-handler on an ActiveX object at AN202 on 

the page ‘Page1’, we can define the function in the CiCode editor as follows: 

FUNCTION page1_AN202_Mousedown(OBJECT this, INT a, INT b,INT c,INT d) 

         Message("Hi","The MouseDown event has triggered",0); 

END 

 

This will display a Message Box whenever the Mouse is clicked on the particular 

object. 

Since we the handle of the calling ActiveX control has been parsed in as OBJECT 

this, we could add to our Event Handler: 

 
FUNCTION page1_AN202_Mousedown(OBJECT this, INT a, INT b,INT c,INT d) 

    sText = _ObjectGetProperty(this, “Value”); 

    Message("Hi","The MouseDown event has triggered and the value of ‘Value’ is “ + 

sText,0); 

END 

 



Advanced Concepts 
Outlined below are some more advanced ActiveX concepts and examples. Process 

Analyst is an ActiveX Control that utilizes a number of these concepts and is a 

Control that we will likely want to manipulate, so it will be the example used to 

demonstrate these topics. 

Accessing Properties with Indices 

CitectSCADA cannot use _ObjectGetProperty to retrieve Properties with an index. 

However, some controls (such as Process Analyst) provide methods to access these 

using additional methods. 

 

In order to access the Array Property ‘Item’, Process Analyst provides the method 

‘Get_Item’ which can accept an argument, which is the index. For example, to access 

Item(1) we use: 

hPen = _ObjectCallMethod(hPens, "get_Item", 1); 

This will make more sense after the next section. 

Accessing members of ‘Nested’ Classes 

 

Sometimes ActiveX controls with have multiple ‘Classes’, and the methods that you 

want to use may be ‘nested’ within one of these classes. 

 

For example, Process Analyst has multiple classes, many with duplicate ‘Members’ 

 

 
 

 
 

So we would need to distinguish between the ‘Create’ Method in Pens, and the 

‘Create’ method in Panes. In VBA you could use Panes.Create and Pens.Create, but 

CiCode does not have this functionality, hence you need to do the following: 



First, say our Process Analyst instance is at AN 215, we use the following code to 

return the Handle of that instance, as done previously: 

 

hProcessAnalyst = ObjectByName(“AN215”); 

 

Then, in order to return a handle to the ‘Panes’ class within the ActiveX, we use: 

 

hPanes = _ObjectGetProperty(hProcessAnalyst,”Panes”); 

 

Now, we can use the methods of that class in the normal way, but using this new 

handle instead of the original handle of Process Analyst, however, since the Property 

we want to obtain (Item) is an array, we need to use the ‘Get_Item’ method, as 

explained in the previous section. We then end up with: 

 

hPane = _ObjectCallMethod(hPanes, "get_Item", 1); 
 

This now gives us a handle to the first Pane. From this, we can get a handle to the 

Pens class, within that Pane: 

 

hPens = _ObjectGetProperty(hPane , "Pens"); 
 

And by using the aforementioned technique, we can now obtain a handle to a specific 

Pen within that specific Pane. 

 

hPen = _ObjectCallMethod(hPens, "get_Item", 1); 
 

Now we can simply call any of the iPen Class members on this Pen, in the usual way, 

i.e:: 

_ObjectCallMethod(hPen, "Select"); 

sTrendTagName = _ObjectCallMethod(hPen, "GetInformation", "Tag"); 

sTrendTagComment = _ObjectCallMethod(hPen, "GetInformation", "Comment"); 

sTrendVisible = _ObjectGetProperty(hPen, "Visible"); 

_ObjectSetProperty(hPen, "Visible",0); 

etc… 

iDispatch Interface and Citect Compatability 

 

As per KBQ4575, not all ActiveX's listed in the "Insert ActiveX Control" menu can 

be used in CitectSCADA.  

 

In order to use an ActiveX object on a CitectSCADA page, CitectSCADA requires 

that the ActiveX control has an iDispatch interface. 

 

If you try to use an ActiveX without this interface, which is not compatible, you will 

get the following error. 



Linking Properties to SCADA Tags at Runtime via CiCode 

 

As discussed in the section “Linking Properties to SCADA Tags in Design-Time” it is 

possible to link Properties to SCADA Tags at Design-Time. However, it is also 

possible to do this at Runtime, via the CiCode function: 

 

ObjectAssociatePropertyWithTag 

 

Our previous example that we configured via Design-Time: 

 

“…A practical example of using this would be linking the ‘Value’ Property of a MS 

Forms Textbox to a SCADA String Tag, to update on the ‘Change’ event..” 

 

This would be achieved via the following Cicode function (assuming AN201): 

 
ObjectAssociatePropertyWithTag(ObjectByName(“AN201”,”Value”,”sTagName1”,”Change”); 

 

 
 

From Help:  

 

Syntax: 
ObjectAssociatePropertyWithTag(sObject, sPropertyName, sTagName [, sOnChangeEvent] )  

 

sObject:  
The object instance that associates a property with a tag.  

 

sPropertyName:  
The name of the ActiveX property to associate with the tag.  

 

sTagName:  
The name of the CitectSCADA variable tag to associate with the property.  

 

sOnChangeEvent:  
The name of the "on change" event that informs CitectSCADA of a change to the 

ActiveX object. This is required where the ActiveX object does not automatically 

generate a property change notification. Choose an event that happens to be fired 

whenever the ActiveX object property changes, for example, the MS Calendar 

Control fires an AfterUpdate event whenever a day button is pressed.  

 

Return Value  

0 (zero) if successful, otherwise an error is returned.  

 

Note: An association will fail if property change notification is not supported and 

the OnChangeEvent argument is left blank.  



ActiveX Cicode Function List 

 

Here is a listing of all the ActiveX related CiCode functions. Some of the functions 

such as ObjectIsValid and ObjectHasInterface can be leveraged to add error handling 

and to make your CiCode more robust, especially when creating instances during 

Runtime, and where you cannot guarantee that the instance was created successfully. 

 

_ObjectCallMethod  Calls a specific method for an ActiveX object.  

_ObjectGetProperty  Retrieves a specific property of an ActiveX object.  

_ObjectSetProperty  Sets a specific property of an ActiveX object.  

AnByName  Retrieves the animation point number of an 

ActiveX object.  

CreateControlObject  Creates a new instance of an ActiveX object.  

CreateObject  Creates the automation component of an ActiveX 

object.  

ObjectAssociateEvents  Allows you to change the ActiveX object's event 

class.  

ObjectAssociatePropertyWithTag Establishes an association between a variable tag 

and an ActiveX object property.  

ObjectByName  Retrieves an ActiveX object.  

ObjectHasInterface  Queries the ActiveX component to determine if its 

specific interface is supported.  

ObjectIsValid  Determines if the given handle for an object is 

valid.  

ObjectToStr  Converts an object handle to a string.  

 



Link / Recommended Reading 

I recommend reading the advanced Process Analyst whitepapers, available in the 

KnowledgeBase: 

 

WhitePapers: 

• Adding a Column to Display the Current Trend Value 

• Creating custom toolbar buttons in Process Analyst 

• How to configure CiRecipe ActiveX control in CitectSCADA 

 

KB Articles: 

 

Q4634 - Tag association in ActiveX object only accepts name =<32 characters  

Q4483 - My ActiveX's event wont trigger (EventName is being concatenated to 33 

Characters in length) 

Q4102 - Finding members of an ActiveX control library 

Q4334 - How do I view Microsoft Forms ActiveX Controls without installing 

Microsoft Office? 

Q4181 - Creating ActiveX controls that integrate with CitectSCADA 

Q3900 - What Are the Differences between Making Tag Associations at Runtime and 

Design Time? 

Q3876 - Common Questions about ActiveX Controls in CitectSCADA 

Q3809 - How Can I Remove the Obsolete ActiveX Entries from the Registry?       

Q3696 - _ObjectCallMethod May Cause CitectHMI/SCADA Crash. 

Q3386 - Using the ActiveX Registration Tool REGSVR32.EXE 

Q3237 - How to use IE Browser ActiveX control with Citect 

Q2994 - Using Active X Cicode Functions 

 

 


